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Abstract

This paper primarily focuses on the GMM estimation of dynamic panel data mod-

els, where many moment conditions have been proposed under various assumptions.

These moment conditions grow quadratically with the number of time periods T , mak-

ing it difficult for researchers to determine which assumptions are satisfied in practice.

Additionally, the presence of too many moment conditions can adversely affect the

performance of the estimator. To address this, we explore the use of the sparse group

lasso method for selecting valid moment conditions from a pool of potentially invalid

ones. This paper reviews and compares existing methods with the sparse group lasso

approach and provides simulation results to evaluate their performance. The applica-

tion of the sparse group lasso method in dynamic panel data estimation demonstrates

improved performance over the adaptive elastic net GMM approach proposed by Caner

et al. (2018) in MSE, bias and standard errors. It performs similarly to the AL meth-

ods proposed by Andrews and Lu (2001), except in the most high-dimensional cases

where AL performs better. However, AL is much more computationally costly than the

Sparse group lasso approach. In addition, I apply this method to examine the effects

of different Non-Pharmaceutical Interventions (NPIs) on mobility and how mobility

influences the transmission of Covid-19. The results reveal that the effectiveness of

policy measures varies significantly depending on the demographic characteristics of

different areas, highlighting the need for more tailored policy approaches to effectively

contain the spread of Covid-19.
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1 Introduction

Dynamic panel data models are useful and have proven to be popular in economic and

social studies. They allow researchers to account for individual heterogeneity by controlling

for unobserved time-invariant characteristics, instead of only focusing on aggregate time

series behavior. Additionally, these models provide insights into the dynamic relationships

within the data, which can be beneficial for impulse response studies. In this way, they

are valuable for both causal inference and prediction. Over the years, dynamic panel data

models (henceforth referred to as DPD models) have been applied to topics such as economic

growth (Forbes, 2000; Levine et al., 2000), employment (Arellano and Bond, 1991; Blundell

and Bond, 1998), and investment rates (Bond, 2002).

DPD models with fixed effects are known to suffer from the Nickell bias (Nickell, 1981)

if estimated by demeaning or first differencing to remove the unobserved heterogeneity, as

this transformation introduces correlation between the regressors and the error terms. Since

then, several methods have been proposed for estimation using the Generalized Method

of Moments (GMM), under various assumptions on the underlying data generating pro-

cess, notably the Difference GMM (Arellano and Bond, 1991) and System GMM estimators

(Blundell and Bond, 1998). Ahn and Schmidt (1995) proposed nonlinear moment condi-

tions, which were recently found to be important for identification (Gørgens et al., 2019).

However, two main concerns arise in empirical applications of these methods: the valid-

ity of moment conditions and the issue of instrument proliferation. Each set of moment

conditions is based on a set of assumptions regarding the model specification, error terms,

unobserved heterogeneity, and initial observations. The empirical problem at hand may or

may not satisfy these assumptions, and most likely, the researcher doesn’t have full knowl-

edge of this. Moreover, the number of moment conditions proposed in the aforementioned

papers grows quadratically with T , potentially leading to overfitting and poor estimation of

the optimal weighting matrix, affecting efficiency and finite-sample performance (Roodman,

2009). Therefore, choosing the right model specifications and moment conditions is essential

for consistent and efficient estimation of DPD models.

Regarding model and moment condition selection in GMM estimation, Andrews (1999)

and Andrews and Lu (2001) introduced a well-known method. Their approach uses an

information criterion-type penalized J-statistic to select the correct model specification and

moment conditions. This method involves constructing several sets of possible models and

moment conditions based on the assumed modeling assumptions. The criteria are then used

to select the appropriate set of model and moment specifications for obtaining the estimates.
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However, this approach is considered computationally expensive, especially when the set

of potential combinations of models and moment specifications is large, as many repeated

estimations and evaluations of the criteria are required for each combination.

This issue was recently addressed by Caner et al. (2018), who, instead of testing batches

of moment conditions, included all possible variables and potential moment conditions in

a general form during their GMM estimation. They used the adaptive elastic net method

(Zou and Hastie, 2005) to simultaneously select both the model specification and the moment

conditions. Their study was conducted under a general framework. However, when focusing

on the dynamic panel framework, we can leverage our knowledge about the underlying

assumptions behind the moment conditions and consider these conditions in groups, as in

Andrews and Lu (2001).

In this paper, I aim to explore the use of the sparse group lasso method (Noah et al.,

2013) for model and moment selection under various assumptions. This approach avoids

testing different combinations of models and moments one at a time, as in Andrews and

Lu (2001), while accounting for the fact that moment conditions in DPD models are often

generated under the same set of assumptions and can thus be treated as valid or invalid

together. This method differs from the group lasso method (Yuan and Lin, 2006) in that

regularization is used to achieve both group-wise and individual-wise sparsity. This feature

has two advantages in practical applications.

Firstly, when implementing model and moment selection simultaneously by incorporat-

ing both into the model—with moment conditions grouped into a few sets—the group lasso

method may assign larger penalties to parameters related to moment selection than to those

related to parameter selection, leading to suboptimal results. Even when penalties are ad-

justed, treating an entire group of moment conditions as either valid or invalid can be overly

restrictive. Roodman (2009) provides an example where, if the conditions for initial observa-

tions in Blundell and Bond, 1998 are violated, the corresponding moment conditions for the

early periods may be invalid, while the degree of violation diminishes over time, resulting in

both invalid and locally valid moment conditions within the same group. In such cases, the

sparse group lasso method offers greater flexibility by allowing for individual-level sparsity

within groups.

In the simulation results, I find that the Sparse Group Lasso outperforms the adaptive

elastic net approach proposed by Caner et al. (2018) in terms of bias, standard errors, and

RMSEs. However, among all methods, the approach by Andrews and Lu (2001) yields the

best performance, particularly in high-dimensional settings. Despite this, it is considerably
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more computationally expensive compared to the shrinkage methods.

Apart from theoretical interest, I also investigate how this method works when applied

to the empirical question of the impact of mobility on the transmission of Covid-19 in the

US. Researchers have proposed various methods for modeling Covid-19 since the start of

the pandemic. However, Anthony Fauci, Director of the National Institute of Allergy and

Infectious Diseases, has raised concerns about these models, famously stating, ”Models are

as good as the assumptions you put into them.” The method I use in this paper helps

relax assumptions within the DPD framework, and I apply this approach to model case

transmission to provide better policy recommendations for managing Covid-19.

My approach is most similar to Wilson (2020), where they use rolling DPD to examine the

sign and size of the impact and trace out the impact response paths for weeks ahead. Their

results are questionable because they estimate the DPD model with fixed effects without

correcting for the Nickell bias, which is particularly serious in a small T , large N setting.

Simulations by Judson and Owen (1999) show that with N = 100 and T as large as 30, the

bias may be as much as 20% of the true value of the parameter of interest. GMM methods

developed so far could greatly improve the RMSE of the estimator. Hence, it is crucial

to conduct the study using the newer methods. Since the Covid-19 situation in the US is

constantly evolving, extending the period of analysis beyond the original study by Wilson

(2020) is also important.

The paper is organized as follows. In Section 2, I set up the model and briefly discuss

the existing methods in terms of their estimation performance. In Section 3, I formulate the

sparse group lasso method. The following section presents the simulation study, comparing

different models under various DGP settings. Then, the method is applied to an empirical

problem to illustrate its usefulness.

2 Model and existing methods

2.1 Model and assumptions

The general model of interest is:

yit = α1yit−1 + · · ·+ αpyit−p + β⊺wit + ci + τt + vit, (1)
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where t = p, . . . , T , and i = 1, . . . , N . The random variables {y1it} are independent across

individuals, have finite means, and satisfy the above relationship. The explanatory variables

{wit} = (x⊺
1it, x

⊺
2it, P

⊺
1it, P

⊺
2it, y

⊺
2it)

⊺ include {x1it} and {x2it} as exogenous variables, {P1it} and

{P2it} as predetermined variables, and {y2it} as endogenous variables. The {ci} are unob-

served time-invariant individual effects, and {τt} are the time fixed effects shared between

individuals. We can first eliminate the time-fixed effect by demeaning cross-sectionally to

simplify our estimation. vit is the error term associated with individual i at time t.

To estimate the parameters (α1, . . . , αp, β), we impose the following standard assump-

tions:

Assumption 1 (Standard Assumptions, SA):

E [vit] = 0, t = p, . . . , T, (2)

E [ci] = 0, ∀i, (3)

E [civit] = 0, ∀i, t = p, . . . , T, (4)

E [visvit] = 0, ∀s ̸= t, ∀i, (5)

E [vityi0] = E [vityi1] = · · · = E [vityip−1] = 0, ∀i, t = p, . . . , T. (6)

Assumption 1 assumes that the individual effect and the error terms have zero means and

are uncorrelated. The error terms are also serially uncorrelated and uncorrelated with the

initial observations. Additional assumptions often made are:

Assumption 2 (Homoskedasticity):

E
[
v2it
]
= E

[
v2ip
]
, t = p, . . . , T. (7)

Assumption 3 (’Stationarity’):

E[yi0ci] = E[yi1ci] = · · · = E[yipci]. (8)

Assumption 2 ensures the error terms’ variance remains constant over time. Assumption 3

asserts that the correlation between the individual effect and the initial observations remains

constant.The failure of this assumption implies that the initial observations are not generated

from the same distribution. It has been shown in Blundell and Bond (1998) to greatly

improve the asymptotic efficiency of a GMM estimator of a dynamic panel data model with
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only one lag and no regressors, when the effect of the lagged variable is close to 1.

For the explanatory variables, we assume:

Assumption 4 (Explanatory Variables):

E
[
vit
(
w⊺

ip, . . . , w
⊺
it−1, x

⊺
1it, x

⊺
2it, P

⊺
1it, P

⊺
2it

)⊺]
= 0, t = p, . . . , T, (9)

E
[
vit
(
x⊺
it+1, . . . , x

⊺
iT

)⊺]
= 0, t = p, . . . , T − 1, (10)

E [ci (x
⊺
1it, P

⊺
1it)

⊺] = 0, t = p, . . . , T, (11)

E [ci (x
⊺
2it, P

⊺
2it, y

⊺
2it)

⊺] = E
[
ci
(
x⊺
2it−1, P

⊺
2it−1, y

⊺
2it−1

)⊺]
, t = p+ 1, . . . , T. (12)

The existing methods are mostly discussed in the AR(1) framework without explanatory

variables:

yit = αyit−1 + uit = αyit−1 + ci + vit, (13)

where t = 1, . . . , T and i = 1, . . . , N . In the following sections, I will begin with this simpler

model and later extend the discussion to the more general model presented earlier.

2.2 Moment Conditions

Many moment conditions have been proposed based on the above assumptions. The as-

sumptions are written as a certain relationship between the observed variables and unknown

parameters so that they could be passed into the GMM framework for estimation. The

popular moment conditions that are used are the following:

From Assumption 1 (SA):

E [ci] = E [vit] = 0 ⇒ E [uit] = E [yit − αyit−1] = 0, t = 1, . . . , T (linear, q = T ). (14)

E [civit] = E [vitvis] = 0 ⇒ E [uit∆uit−1] = 0, t = 3, . . . , T (nonlinear, q = T − 2). (15)

E [vityi0] = 0 (along with E [civit] = E [vitvis] = 0)

⇒ E [∆uityi0] = E [∆uityi1] = · · · = E [∆uityit−2] = 0, t = 2, . . . , T

(linear, q =
(T − 1)T

2
).

(16)
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Additional moment conditions with Assumption 2:

E
[
v2it
]
= E

[
v2i1
]

(along with E [civit] = E [vitvis] = 0)

⇒ E [(ui1 + ui2 + · · ·+ uiT )∆uit] = 0, t = 2, . . . , T (nonlinear, q = T − 1).
(17)

Additional moment conditions with Assumption 3:

E [yi0ci] = E [yi1ci] (along with E [vityi0] = E [civit] = E [vitvis] = 0)

⇒ E [ui2 (yi1 − yi0)] = 0 (linear, q = 1).
(18)

The brackets after each condition indicates whether it is linear in the parameter to

be estimated (i.e., α) and the number of moment conditions involved. Once expressed in

terms of observed variables and unknown parameters, these conditions can be interpreted

as restrictions on the first and second moments of the data. Equation 14 provides the only

restriction on the first moments of the variable set {y1it}. Equations 15 and 16, as shown by

Ahn and Schmidt (1995), represent the moment conditions on the second moments of the

data under Assumption 1 (SA). They demonstrate this by deriving the covariance matrix Λ

for the observed variables (ui1, ui2, . . . , uiT , yi0). After applying Assumption 1, the covariance

matrix simplifies to:

Λ =



σ2
c + σ2

1 σ2
c σ2

c . . . σc0

σ2
c σ2

c + σ2
2 σ2

c . . . σc0

σ2
c σ2

c σ2
c + σ2

3 . . . σc0

...
...

... . . . σc0

σc0 σc0 . . . σc0 σ00


(19)

This is equally represented by the second moments of the observed data:

The matrix above shows how the moment conditions 15 and 16 completely restrict the
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pattern of the covariance matrix into the form implied by Assumption 1. The red equal

signs represent condition 15 and the blue ones represent condition 16. To achieve the same

pattern, we could have other variants of condition 15, such as:

E [uiT∆uit] = 0, t = 2, . . . , T − 1, (20)

or

E [uituit−1] = E [uituit+1] , t = 2, . . . , T − 1, (21)

which, when combined with 16, impose the same set of restrictions.

When we assume the homoskedasticity assumption, Ahn and Schmidt (1995) note that

we can transform the nonlinear moment conditions 15 into linear ones. From 16:

E [∆uityit−2] = 0 ⇒ E [∆uityit−1] = αE [∆uityit−2] + E [∆uituit−1] = E [∆uituit−1] . (22)

Expanding the last term gives:

E [∆uituit−1] = E [uituit−1]− E
[
u2
it−1

]
= E [uit−1uit−2]− E

[
u2
it−2

]
, (23)

where the second variant of 15 and homoeskedasticity condition 17 are used for the second

equality. Therefore we have

E [∆uityit−1] = E [∆uit−1yit−2] , t = 4, . . . , T, (24)

In this way, we transform the nonlinear moment conditions 15 to the above linear conditions.

When we assume the stationarity assumption, Blundell and Bond (1998) propose that

18, together with:

E [uit∆yit−1] = 0, t = 3, . . . , T, (25)

makes the nonlinear moment conditions 15 redundant. To see this, note that underE [vityi0] =

E [civit] = E [vitvis] = 0, we have:

E [yi0ci] = E [yi1ci] ⇔ E [ui2∆yi1] = 0.

The above combined with Equation 25 imply E [yitci] = same for all t. Therefore:

E [∆yit−suit] = 0, s = 1, . . . , t− 1. (26)
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After imposing the above linear moment conditions, the nonlinear conditions 15 are auto-

matically satisfied since

E [uit∆yit−1] = 0 ⇒ E [uit (α∆yit−2 +∆uit−1)] = E [uit∆uit−1] = 0. (27)

Moreover, under both stationarity and homoskedasticity, using both

E [uit∆yit−1] = 0, t = 3, . . . , T, (28)

and

E [∆uityit−1] = E [∆uit−1yit−2] , t = 4, . . . , T, (29)

in addition to the linear moment conditions in Assumption 3:

E [ui2∆yi1] , (30)

would make the nonlinear homoskedasticity moment conditions 17 and those in 15 redundant.

Generalizing the moment conditions to models with multiple lags and explanatory vari-

ables, as described at the start of this paper, is straightforward.

2.3 Moment and model selection methods

The problem I’m trying to solve arises when we know only that SA is satisfied, but we are

unsure whether homogeneity, stationarity, or other sets of conditions hold. Several existing

methods could be used to address this issue, and in this section, I provide a brief introduction

to these methods.

AL’s J statistics Andrews and Lu (2001) propose a method formulated on a very general

dynamic panel data model, where the researcher is uncertain about the true lag length, the

presence of trends, and the correlation structure between explanatory variables and the error

term. Their objective function is based on the J-test for testing overidentification restric-

tions, with an additional penalty term that discourages the inclusion of too many variables

and rewards the use of more moment conditions. They formulate their method using BIC,

AIC, and HQIC criteria. These criteria are used to select the set of variables and moment

conditions, after which post-selection GMM estimation is performed.Their simulation re-
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sults show that estimators formed in this way exhibit lower biases, standard errors, root

mean squared errors, and more accurate rejection rates than GMM without selection. In our

context, their estimation procedure is as follows:

Given a particular selected subset of moment conditions (denoted by the selection vector

c):

E [mc (Yi, α)] ,

where Yi represents the data {yit}t=0,...,T and α is a p×1 vector of parameters, let Gc (Yi, α) =
1
n

∑n
i=1 mc (Yi, α), be their empirical estimates, and Wc be a weighting matrix with estimate

Ŵc (Yi, α). In GMM estimation, the optimal weighting matrix is:

Ŵc (Yi, α)
∗ =

(
1

n

n∑
i=1

mc (Yi, α)mc (Yi, α)
T

)−1

.

The objective functions for moment and model choices are as follows:

MMSCBIC = nGc (Yi, α)
T Ŵc (Yi, α)Gc (Yi, α)− (|c| − |b|) lnn, (31)

MMSCAIC = nGc (Yi, α)
T Ŵc (Yi, α)Gc (Yi, α)− 2(|c| − |b|), (32)

MMSCHQIC = nGc (Yi, α)
T Ŵc (Yi, α)Gc (Yi, α)−Q(|c| − |b|) ln lnn,Q > 2 (33)

where |c| is the number of moment conditions selected and |b| is number of nonzero model

parameters selected. Subsets of moment conditions are evaluated using these objective func-

tions, and the subset that minimizes the objective function will be selected. Then, the usual

GMM estimation is applied to minimize:

Gc (Yi, α)
T Ŵc (Yi, α)

∗Gc (Yi, α) .

They also compare these methods with a downward testing procedure, where researchers

start with the model and moment combinations that maximize the number of overidentifying

restrictions, and step-by-step reduce these restrictions until they find a model that does not

reject the null hypothesis that all the moment conditions are correct. Their simulations show

that the MMSC-BIC and downward testing procedures work best, except for the smallest

sample sizes.

The advantage of their method is its flexibility, as it can accommodate nonlinear mo-

ment and model choices. However, it is computationally expensive, even with the simpler

downward testing procedure, because the optimization process needs to be repeated for each
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set of moment and model choices. If researchers aim to fully exploit this method by allow-

ing for various features in dynamic panel data estimation, such as time-varying coefficients,

structural breaks, and different correlation structures between explanatory variables, fixed

effects, and error terms, the computational burden becomes significant.

Adaptive elastic net Caner et al. (2018) develop a method for GMM estimation that

aims to achieve both model selection and moment selection by incorporating the largest

model and all available moment conditions while penalizing large models and invalid moment

conditions. Their framework can be adapted to fit the dynamic panel estimation context as

well.

They first assign values to the moment conditions as follows:

E [m (Yi, α)] = Fτ, (34)

where

F =

[
0m−s,s

Is

]
, (35)

with m moment conditions and s of them potentially invalid (the upper block corresponds to

the valid conditions we are certain about, while the identity block represents the suspected

conditions). τ is an s × 1 vector (where only s0 of them are truly nonzero due to invalid

conditions).

They then form empirical estimates of E [m (Yi, α)− Fτ ] as:

G (Y, θ) =
1

n

n∑
i=1

(m (Yi, α)− Fτ) , (36)

where θ =
[
αT , τT

]T
is a vector of both model parameters and invalid moment conditions’

deviation from zero.

Their adaptive elastic net GMM for the (p+ s)× 1 vector of parameters θ is defined as:

θ̂ =

(
1 +

λ2

(NT )2

)
argmin

θ
G (Y, θ)T ŴG (Y, θ) + λ1

p+s∑
j=1

π̂j |θj|+ λ2

p+s∑
j=1

θ2j , (37)
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where λ1 and λ2 are tuning parameters, Ŵ is a weighting matrix, typically chosen as:(
1

n

n∑
i=1

(m (Yi, α)− Fτ) (m (Yi, α)− Fτ)T
)−1

, (38)

and p is the number of parameters to estimate (length of α). π̂j is the estimated weight

on each coefficient. The term
(
1 + λ2

(NT )2

)
is included to reduce the bias caused by double

shrinkage.

The estimation procedure is as follows: given a set of tuning parameters, we first estimate

the elastic net estimator using the identity matrix as the weighting matrix:

θ̂enet = argmin
θ

G (Y, θ)T G (Y, θ) + λ1

s∑
j=1

|θj|+ λ2

s∑
j=1

θ2j . (39)

From this step, we obtain θ̂enet. The weighting matrix Ŵ is then estimated as:(
1

n

n∑
i=1

(m (Yi, α̂enet)− F τ̂enet) (m (Yi, α̂enet)− F τ̂enet)
T

)−1

, (40)

and π̂j is estimated as
∣∣∣θ̂j∣∣∣−γ

. In the second step, these are substituted into Equation 37 and

minimizing the objective function would deliver the optimal model and moment parameters.

The tuning parameters λ = (λ1, λ2) are selected by minimizing the BIC-type information

criterion:

G
(
Y, θ̂
)T

ŴG
(
Y, θ̂
)
+ |Sλ| ln(n)max {ln(ln(p+ s)), 1} , (41)

where |Sλ| is the number of nonzero estimated coefficients under a tuning parameter choices

λ.

Estimators developed under this setting show selection consistency and asymptotic nor-

mality, achieving the GMM efficiency bound (what can be achieved under full knowledge

of the true moment conditions). Compared with previous literature, this method allows

for moment conditions that hold only asymptotically to be selected as valid if the attached

parameters decrease faster than a certain rate. The design of adding the l2-norm ensures

highly correlated variables remain in the model during selection. This way, correlated in-

valid instruments causing bias are all excluded, while correlated valid instruments improving

efficiency are all retained.

Although this method was developed for GMM estimation, it was not specifically designed

12



for dynamic panel data. In a brief section on its application to dynamic panel models, the

only moment conditions they consider are Arellano and Bond (1991)’s linear moment con-

ditions (equation 16 in our case) and the uncorrelatedness condition between the exogenous

variable and the error term. The serial correlation assumption in their design is somewhat

uncertain. In this paper, I aim to explore the dynamic panel setting more thoroughly, consid-

ering the violation of various assumptions. Additionally, the group characteristics of moment

conditions under different assumptions are not utilized in their method, but this extra infor-

mation could be used to improve the performance of the GMM estimator in dynamic panel

data models.

The proposed sparse group lasso approach for model and moment selection in this pa-

per can be extended to conduct GMM estimation, where the variables or moments have a

grouping structure. Hence, the method also connects to the literature on using shrinkage

methods for instrument selection. Kang et al. (2020) use lasso shrinkage for linear instru-

mental variable estimation. The intuition behind their method is that for instruments to

be valid, the coefficient on them, when added to the second-stage regression, should be

zero. This is derived from the moment condition that the instruments are uncorrelated with

the second-stage error term. They also set up a GMM-type criterion function, with an ℓ1

norm penalty term that penalizes the coefficients for the instruments, which is based on

their identification condition that the number of invalid instruments must be below a certain

threshold. Windmeijer et al. (2020) further extend this by using the adaptive lasso method

to achieve better variable selection properties, resulting in improved results.

There is more literature on linear instrument selection using shrinkage methods, including

Belloni et al. (2012), where they show that IV estimators using Lasso and Post-Lasso in the

first stage are
√
n-consistent, asymptotically normal, and semi-parametrically efficient under

homoskedasticity, assuming approximate sparsity. However, their method, like many others

in this area, does not consider the invalid instrument scenario.

The method I develop in this paper is specifically designed for the dynamic panel setting,

allowing for the grouping structure in moment conditions to be used, although it is currently

constrained to linear models and moment conditions.
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3 Selection using Sparse Group Lasso

This method extends the model used by Caner in Equation 37 in that the penalties on

the model and moment parameters now take into account their grouping structure and

performs group-wise and within-group selection. This is achieved by adopting the sparse

group lasso estimator proposed in Noah et al., 2013. Continuing with previous notations,

E[m (Yi, α)] = 0 is a stack of m moment conditions and can be written as:

E[m (Yi, α)] = E[Bi − Aiα] = 0. (42)

The sample moment conditions are therefore:

G (Y, θ) =

(
1

n

) n∑
i=1

(Bi − Aiα− Fτ) =

(
1

n

) n∑
i=1

(
Bi −

[
Ai F

] [α
τ

])
, (43)

which we can formulate as

G (Y, θ) =

(
1

n

) n∑
i=1

(Bi −Xiθ) , (44)

where Xi is a q × (p + s) matrix. The sparse group lasso estimator for our dynamic panel

model is defined as

θ̂sgl = argmin
θ

G (Y, θ)T ŴG (Y, θ) + λ1

M∑
g=1

mg∥θφg∥2 + λ2∥θ∥1 (45)

where mg is the weight for each group, φg indicates the coefficients in group g, and λ1 is

a tuning parameter. Typically, mg is taken as
√

|φg|, which represents the cardinality of

group g.

The properties of the Sparse Group Lasso are seen through the subgradient of its objective

function: for each group k, β̂k needs to satisfy the following for optimality:

1

n
(Xk)

T (B −
M∑
l

Xlβ̂
l) = λ1mgs2 + λ2s1, (46)

where s1 and s2 are subgradients of the l1 and l2 norms evaluated at β̂k and Xk is the subset
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of columns in X that correspond to group k parameters.

s2 =

{
β̂k

∥β̂k∥2
if β̂k ̸= 0

∈ {s2 : ∥s2∥2 ≤ 1} if β̂k = 0
(47)

s1j =

{
sign(β̂k

j ) if β̂k
j ̸= 0

∈ {s1j : |s1j| ≤ 1} if β̂k
j = 0

(48)

Therefore, as discussed in Noah et al. (2013), for the whole group to be dropped, we

need to satisfy a similar condition to Lasso, but with the coefficients in that group filtered

through a soft shrinkage threshold controlled by λ2 before applying the hard thresholding

step. Within groups that are not dropped, the variables that are not selected satisfy the same

conditions as in Lasso for a variable to be inactive, and the nonzero variables are estimated

under elastic net-type conditions. Thus, overall, the shrinkage is more conservative at the

group level than in the group lasso method and performs similarly to the elastic net at the

individual level. This approach fits our purpose well, as within a group of moment conditions,

some may be unsatisfied during the initial periods but become asymptotically satisfied later

on.

Regarding computation, Noah et al. (2013) developed an algorithm that first checks if

each group satisfies the condition to be dropped together. If not, individual estimates within

each group are then solved using an accelerated generalized algorithm with backtracking.

Since the penalties are separable between groups, their block gradient descent algorithm

converges to the global minimum. In recent years, faster algorithms have been developed,

such as the Fast Sparse Group Lasso Fujiwara et al. (2016), which improves speed by skipping

the updates for groups where the parameters must be zero and focusing on updating groups

where the coefficients must not be zero. This greatly improved our computational efficiency.

Another important consideration is that for optimal GMM estimation, we still need

to calculate a first-step consistent covariance matrix for the moment conditions and use

its inverse as the weighting matrix in the second-step estimation. In the simulations and

empirical applications, we use the least restrictive GMM (the setting where we only use

the certain moment conditions and the largest model) to form our first-step estimates and

covariance matrix. To improve the accuracy of the inversion of this high-dimensional matrix

(as in the sparse group lasso approach, we retain all potential moment conditions at the

start, which grows quadratically with T ), we apply linear shrinkage Ledoit and Wolf (2004).
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4 Simulation study

For the simulation studies, I follow the setting of the empirical model in the subsequent

section as closely as possible, where the researcher develops a model but faces uncertainty

in terms of model specifications (lag length), as well as the underlying assumptions with

their corresponding moment conditions. This setting mirrors that in the empirical section,

where mobility is assumed to be predetermined but unsure whether it is strictly exogenous,

as it could be influenced by past shocks to the growth rate of cases but remains uncorrelated

with future shocks to the growth rate. Weather variables, on the other hand, are typically

assumed to be strictly exogenous. I assume the model has one lagged effect, while the

researcher is unsure whether there are 1 or 2 lags. This setting helps evaluate different

methods’ performances in selecting the appropriate lag length.

The true model

yit = αyit−1 + β1pit + β2xit + ηi + vit, (49)

where t ≥ 1, yit is the outcome variable, pit is the predetermined but not strictly exogenous

variable, xit is the strictly exogenous variable, ηi is the unobserved time-invariant individual

effect, and vit is the error term. This is an AR(1) model with explanatory variables and

satisfies the following assumptions: ηi ∼ N(0, σ2
η), vit ∼ N(0, σ2

v), E[ηivit] = 0 ∀t, E[visvit] =

0, ∀s ̸= t, and E[vityi0] = 0, t = 1, . . . , T . The variables from the true model are generated

with the following correlation structure:

(xi1, xi2, . . . , xiT , pi1, pi2, . . . , piT , ηi, vi1, vi2, . . . , viT )
T ∼ N(0,Σ), (50)

where

Σ =


σ2
xIT σxpIT σxη1T×1 0T

σxpIT σ2
pIT σpη1T×1 σpvP

σxη11×T σpη11×T σ2
η 01×T

0T σpvP
T 0T×1 σ2

vH.

 (51)
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H =


h1 0 0 . . . 0

0 h2 0 . . . 0
...

...
... . . .

...

0 0 0 . . . hT

 leads to homoskedasticity if h1 = h2 = · · · = hT , while

P =



0 0 0 . . . 0 0

1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 0


(52)

indicates that the predetermined variable is only correlated with the error term from the last

period.

Initial Observation and Stationarity The generation of the initial observation takes

into account the ’stationarity’ assumption:

E[ηiyi0] = E[ηiyi1] ⇒ E[ηiyi0] = αE[ηiyi0] + β1σpη + β2σxη + σ2
η, (53)

which leads to:

E[ηiyi0] =
β1σpη + β2σxη + σ2

η

1− α
. (54)

Therefore, the initial observation is generated as:

yi0 =
β1σpη + β2σxη + σ2

η

(1− α)σ2
η

ϕηi + vi0, (55)

where ϕ = 1 and vi0 ∼ N(0, σ2
v), independent from the other error terms, assuming the

stationarity condition is satisfied.

Parameter settings The parameter settings are taken from a first-stage GMM estimation

of the relationship between mobility and Covid case growth, assuming that it follows the

true model. A daily panel of US counties is used for this exercise. Specifically, the model we

estimated in generating the parameter setting is:

∆caseit = α∆casei,t−1 + β1∆mobi,t−1 + β2∆testi,t + αi + ϵit, (56)
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where ∆caset is the 100*(log difference of cumulative cases) for period t, ∆mobt−1 is the

first-differenced mobility index MEI (detailed in Section 5.1), and ltest is 100*(log difference

of cumulative tests). All the variables are first demeaned cross-sectionally to eliminate

time fixed effects. Lags of orders 5 to 10 of the dependent variable are used to estimate

the model with GMM. Both the Sargan’s J test and the autocorrelation tests are passed.

The estimation result is shown in Table 1. Once we have the parameter estimates, we can

recover the individual fixed effects by obtaining the fitted values for the model as well as the

aggregate residual (fixed effect + residual). Averaging each county’s residuals over time gives

the county fixed effects, and subtracting the fixed effects from the aggregated residuals gives

the residuals. Then, we can calculate the variances and covariances between these variables

and other regressors in the model. In the end, we obtain the following set of parameter

values:

(α, β1, β2, σ
2
x, σ

2
p, σ

2
η, σ

2
v , σxp, σxη, σpη, σpv) = (0.7, 0.07, 0.05, 4000, 50, 2.7, 60, 24, 0.43,−0.43,−11).

(57)

Table 1: Preliminary regression on parameter values

Dependent variable:∆caset

∆caset

∆caset−1 0.708∗∗∗

(0.034)

∆mobt−1 0.069∗∗

(0.031)

∆testt 0.051∗∗

(0.023)

Sargan’s J Test P-value 0.438
Observations 879

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The h1, h2, . . . , hT values that characterize the heteroskedasticity pattern are generated

arbitrarily, with half of the values taking 1 and the other half taking 2. The sample sizes I

consider are (T,N) = (10, 500), (10, 1000), (30, 500), (30, 1000), where the last case is exper-

imented due to its resemblance to the empirical setting. For each setting, I perform 1000

iterations.
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The researcher’s model

yit = α1yit−1 + α2yit−2 + β1pit + β2xit + ηi + vit (58)

where t = 2, . . . , T . The researcher knows the ”SA” assumptions are satisfied but is unsure

about the homogeneity and ’stationarity’ assumptions. Regarding the explanatory vari-

ables, the researcher knows that xit is strictly exogenous but is uncertain whether pit is

predetermined or strictly exogenous. The pool of linear moment conditions to use includes:

Conditions known to be valid (1st set):

E [yit − α1yit−1 − α2yit−2 − β1pit − β2xit] = 0, t = 2, . . . , T

The length of moment conditions above is T − 1.

E
[
(yi0, yi1, . . . , yit−2)

(
∆yit − α1∆yit−1 − α2∆yit−2

− β1∆pit − β2∆xit

)]
= 0, t = 3, . . . , T

The length of moment conditions above is (T+1)(T−2)
2

.

E
[
(xi1, xi2, . . . , xiT )

(
∆yit − α1∆yit−1 − α2∆yit−2

− β1∆pit − β2∆xit

)]
= 0, t = 3, . . . , T

The length of moment conditions above is T (T − 2).

E
[
(pi1, . . . , pit−1)

(
∆yit − α1∆yit−1 − α2∆yit−2

− β1∆pit − β2∆xit

)]
= 0, t = 3, . . . , T

The length of moment conditions above is (T+1)(T−2)
2

.

Additional conditions are valid if homoskedasticity holds (2nd set):

E
[
yit−1

(
∆yit − α1∆yit−1 − α2∆yit−2 − β1∆pit − β2∆xit

)]
= E

[
yit

(
∆yit+1 − α1∆yit − α2∆yit−1 − β1∆pit+1 − β2∆xit+1

)]
, t = 3, . . . , T − 1
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⇒ E
[
(yit−1∆yit − yit∆yit+1)− α1(yit−1∆yit−1 − yit∆yit)

− α2(yit−1∆yit−2 − yit∆yit−1)− β1(yit−1∆pit − yit∆pit+1)

− β2(yit−1∆xit − yit∆xit+1)
]
= 0,

t = 3, . . . , T − 1 (59)

The length of moment conditions above is T − 3.

Additional conditions are valid if stationarity holds (3rd set):

E
[(

yit − α1yit−1 − α2yit−2 − β1pit − β2xit

)
∆yit−1

]
= 0, t = 2, . . . , T

(60)

The length of moment conditions above is T − 1.

If both homoskedasticity and stationarity conditions are satisfied, we would have both sets

of moment conditions above (2nd and 3rd sets).

Additional conditions if pit is strictly exogenous (4th set):

E
[
(pit, pit+1, . . . , piT )

(
∆yit − α1∆yit−1 − α2∆yit−2

− β1∆pit − β2∆xit

)]
= 0, t = 3, . . . , T

The length of moment conditions above is (T−2)(T−1)
2

.

Now we have all 4 sets of moment conditions the researcher may think of using. In terms of

model specification, the researcher has 3 choices: lag length of 1, or 2.

Under the correct model, α2 should be 0, and with different settings of the correct model,

the corresponding correct moment conditions to use are the following:

non-”stationary” and heteroskedastic Set 1

”stationary” and heteroskedastic Set 1, 3

non-”stationary” and homoskedastic Set 1, 2

”stationary” and homoskedastic Set 1, 2, 3

Performance measurements I compare the results for the following methods: Andrews

and Lu (2001)’s moment and model selection by information criteria (including AL-AIC, AL-

BIC, AL-HQIC), Caner et al. (2018)’s method of selection by adaptive elastic net (Caner),

the group lasso approaches proposed in this paper, benchmark GMM estimators using the
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correct model (Correct), the biggest model with all moment conditions (Biggest), the smallest

model with minimum moment restrictions (Smallest), the most restrictive model with the

smallest model and all moment conditions (Most), and the least restrictive model with the

biggest model and minimum moment conditions (Least). Note that the GMM estimation for

all methods are two-step GMM with the optimal weighting matrix calculated as the inverse

of the first-step covariance of the moment conditions.

The performance measurements include the averaged bias, standard error, and RMSE of

the estimators for the parameters in our model.

Simulation results The simulation results are reported as bar plots in Figure 1, 2, 3,

and 4. These figures show for difference performance metric and sample size combinations,

the mean value across all the parameters in our model, with each color representing an

estimation method. The results for the 4 different settings on whether the model satisfies

homoskedasticity/’stationarity’ seem similar. AL methods perform the best out of the can-

didate methods but the computation time greatly scales up when we have more candidate

model and moment choices. The Sparse group lasso method shares similar performance as

AL methods in most scenarios but with much faster speed. The most noticeable exception

where Sparse group lasso performs significantly worse compared with the AL method is for

when T = 30 and N = 500, the most high-dimensional setting in our simulation. Caner’s

adaptive elastic net method also performs badly in this scenario. This is largely related to

the bias introduced by the shrinkage methods, motivating further work to be done on better

bias-corrected versions of these estimators. Compared with Caner’s adaptive elastic net, our

sparse group lasso method generally performs better in terms of MSE, bias, and variance.

We also observe that the biggest and the least restrictive models work significantly worse

than the others. Given our true model is sparser with only 1 lag, this highlights how getting

the model choices wrong can affect the results way more than getting the moment choices

wrong, as the effect of the latter can be diluted by other correct moment conditions. For all

methods, when we increase N , for a given T , the MSE, bias, and variance tend to decrease

as empirical moments are estimated more accurately. When we increase T , for a given N ,

MSE and bias tend to increase whereas the parameter’s variances tend to decrease.
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Figure 1: Performance metrics for stationary and homoskedastic models

5 Application: modeling the impact of mobility on

covid spread

Covid-19 has been spreading in the U.S. since February 2020, infecting millions of Americans.

To contain the situation, the government must control the transmission of the virus through

public health policies until vaccines become available. From the onset of the pandemic, most

countries adopted one of two primary strategies. The first strategy involved more relaxed

measures aimed at achieving “herd immunity” by allowing the virus to spread through the

population, with the hope of reaching collective immunity. In this approach, the policy

measures typically focus on isolating infected individuals, promoting hygiene practices, and

encouraging limited social distancing to mitigate the spread. The second strategy involved

more stringent measures designed to cut off transmission routes and suppress the spread

of the disease (Qiu et al., 2020). While most Western countries initially adopted the first

approach, countries like China, South Korea, and Singapore implemented stricter policies

from the outset. These countries adopted Nonpharmaceutical Interventions (NPI), which

included restrictions on mobility, city lockdowns, mandatory quarantines, isolation of cases,

and the closure of schools and non-essential businesses.

Although the latter approach is effective in controlling the spread, it is also controversial

for both economic and political reasons. The restrictions on mobility have caused significant

economic harm, including halted production, failing businesses, and rising unemployment.
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Figure 2: Performance metrics for non-stationary and homoskedastic models

Furthermore, the government’s authority to restrict personal freedoms, such as mobility, is

largely constrained by constitutional protections (Schwartz and Nathan, 2017). This trade-

off has contributed to the slow policy response in the United States. Although the first

confirmed case of Covid-19 was announced by the Centers for Disease Control on January

21, and the World Health Organization assessed the global risk of the coronavirus as “high”

on January 27 (Presse, 2020), a national state of emergency was not declared until March

13, with the only mandatory national policy being international travel restrictions (Chowell

and Mizumoto, 2020). Social distancing measures were not mandated at the federal or state

levels until March 19, and even by April 8, five states had yet to implement social distancing

rules, while three others had only partial rules in place (Sharkey, 2020).

Despite the challenges posed by mobility restrictions, most countries, including the U.S.,

eventually opted for this approach in the later stages of the pandemic for several reasons.

First, during the early stages, contact tracing without widespread mobility restrictions re-

mained viable, as testing and hospital capacity were sufficient to manage the relatively small

number of infected individuals. However, in the later stages, when the virus had already

spread across the country, reducing transmission fundamentally by limiting the pool of sus-

ceptible individuals became necessary to alleviate the burden on the healthcare system and

keep the virus under control. Secondly, later medical research revealed that nearly half of all

transmissions occur through pre-symptomatic and asymptomatic individuals (Ferretti et al.,

2020). As shown in Figure 7 in the Appendix, which illustrates the estimated contributions

to the basic reproduction rate (R0) from different transmission routes, this finding indicates
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Figure 3: Performance metrics for stationary and heteroskedastic models

that tracing and quarantining only symptomatic individuals is insufficient to contain the

disease. Therefore, broader societal measures restricting mobility are essential to controlling

the spread.

Given that mobility restrictions are both costly and necessary for managing the current

pandemic, it is crucial to evaluate and quantify their impact on the growth rate of new

cases and death rates. Such an evaluation helps determine whether the benefits of these

restrictions truly outweigh the economic, social, and political costs. To achieve this, it is

essential to consider the methods available for assessing the effects of mobility on the spread

of Covid-19. To my knowledge, the methods used in the literature on this subject can

be divided into several categories: mechanistic, phenomenological, correlational, instrument

variable-based, and event study-styled approaches. These methods provide different insights

into the relationship between mobility restrictions and pandemic outcomes.

Mechanistic and phenomenological models are two key approaches to modeling the trans-

mission process. Mechanistic models are based on the transmission process itself, incorpo-

rating parameters derived from epidemiological evidence, with others fitted to data. These

models are particularly useful for counterfactual analysis and extrapolation beyond the esti-

mation period. However, they rely heavily on assumptions that can be uncertain, especially

in the context of an evolving pandemic, making them difficult to adapt to different stages of

the outbreak. In contrast, phenomenological models estimate transmission through curve-

fitting methods. While they lack the biological nuance of mechanistic models, their simplicity
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Figure 4: Performance metrics for non-stationary and heteroskedastic models

allows for easier comparison across different studies, which is often challenging with mecha-

nistic models due to the variation in assumptions and processes they capture (Avery et al.,

2020).

Examples of mechanistic models include those by Flaxman et al. (2020), Unwin et al.

(2020), Hsiang et al. (2020), and Chen and Qiu (2020). Flaxman et al. (2020) studied the

effects of major interventions across 11 European countries using a Bayesian model that

simulates infection cycles, where different NPIs affect the time-varying reproduction num-

ber. Their results indicate that combined interventions lead to substantial reductions in

the reproduction number. Similarly, Unwin et al. (2020) applied a similar methodology to

U.S. states and found that increased mobility leads to a resurgence of transmission. Other

studies, such as Hsiang et al. (2020), explored the effects of NPIs in various localities using

a reduced-form econometric model based on the susceptible-infected-recovered (SIR) frame-

work. However, their model’s limited applicability in later stages of the pandemic and the

short time span of their analysis present challenges for generalization.

Phenomenological models, such as those developed by Soucy et al., 2020, offer a different

perspective. Their model used the Citymapper Mobility Index (CMI) to measure mobility

in 41 cities worldwide, estimating a multilevel linear regression to study the association

between mobility and case growth. While this method allows for broad comparisons, the

lack of control for confounding variables like weather limits its ability to establish causal

relationships. Another correlational study by Badr et al., 2020 used mobile phone data
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to correlate mobility with moving averages of case growth, but it faces similar limitations

regarding causality.

Instrument variable-based approaches provide a different angle by using external factors

to isolate the effect of mobility. For example, Kapoor et al. (2020) used rainfall before

lockdown as an instrument for mobility, although their approach has been criticized for

not accounting for incubation periods and the weak variation in mobility driven by rainfall.

Glaeser et al. (2020) used employment by industry to measure mobility, leveraging differences

in essential versus remote-work jobs, though this approach also suffers from potential omitted

variable bias due to income disparities between areas.

Lastly, event study methods, such as Difference-in-Difference (DID) and Synthetic Con-

trol, have been employed to assess the impact of mobility restrictions on Covid-19 trans-

mission. Research on U.S. data has yielded varied results depending on the data sources

used. Abouk and Heydari (2020) found that strong measures like shelter-in-place orders

(SIPO) significantly affected mobility and subsequently reduced case growth, while lenient

policies had little impact. However, other studies, such as Gupta et al. (2020), argue that

most reductions in mobility were voluntary rather than policy-driven, presenting a complex

picture of how mobility restrictions influence transmission.

In terms of geographical focus, most studies have concentrated on China, where results

consistently show a positive association between mobility and virus transmission. These

studies measure mobility in different ways, including traffic in and out of Wuhan (Kraemer

et al., 2020), social distancing measures (Tian et al., 2020), and national mobility flows

(Chinazzi et al., 2020). Chinazzi et al. (2020) highlights the ripple effect of mobility changes

in one location on global transmission dynamics, which points to the need for network

modeling—though this approach is beyond the scope of this paper.

In this paper, I aim to evaluate the impact of mobility restrictions on the growth rate

of Covid-19 cases by following a two-step approach. First, I estimate the relationship be-

tween mobility and Nonpharmaceutical Interventions (NPIs). Second, I analyze the effects

of mobility on the growth rates of Covid-19 cases over several subsequent periods.

Step 1 focuses on estimating how different NPIs, such as “shelter-in-place” orders (SIPOs)

and the closure of schools and non-essential businesses, affect mobility. Estimating these

relationships using U.S. data is particularly advantageous due to the decentralized nature of

policy decisions. The U.S. federal government delegated these decisions to individual states

and counties, resulting in significant variations in decision-making processes, the types of
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measures implemented, and the timing of policy actions across the country (Adolph et al.,

2020). This variation provides a rich dataset for examining how policy-induced reductions

in mobility influence subsequent changes in the growth rate of Covid-19 cases. This analysis

contributes to the literature focusing on comparing the effects of various NPIs on mobility

(see Courtemanche et al., 2020 and Gupta et al., 2020).

Step 2, inspired by Wilson (2020), involves analyzing the effects of mobility on the growth

rate of cases. Unlike Wilson (2020), however, this paper estimates the dynamic panel model

using Generalized Method of Moments (GMM) and implements moment selection to address

potential Nickell bias, which is not corrected for in the earlier work. By applying this method,

I estimate how mobility levels during the pandemic influence case growth rates several periods

ahead.

During the formulation of the model, several key considerations are taken into account.

First, existing literature suggests heterogeneity in the effects of mobility on cases across

different communities, based on factors such as income levels, education levels, racial com-

positions, population densities, and health expenditures (Wilson, 2020, Castex et al., 2020,

Sa, 2020, Bonardi et al., 2020). To capture this variation, the model is run not only on the

full dataset but also on subsets with different characteristics. The second key consideration

involves selecting the appropriate dependent variable and lag structure. In this paper, I use

two-week lagged effects of mobility on new Covid-19 cases, reflecting the time from infection

to symptom onset (approximately 7 days) and the time from testing to confirmation of a case

(another 7 days), as recommended by the medical literature (Lauer et al., 2020). Addition-

ally, I control for county-specific time-invariant factors and nationwide time-varying issues in

reporting by using county fixed effects and nationwide time fixed effects. However, potential

biases may still arise from time-varying factors specific to certain counties, particularly if

reporting quality varies at different stages of the pandemic. For example, reporting may be

less accurate during the early stages or peak times of the pandemic, which could undermine

the validity of the results.

In interpreting the findings, it is also important to be cautious. The effects of removing

mobility restrictions may differ from the estimated effects of imposing them, as mobility

could overshoot typical levels once restrictions are lifted due to pent-up demand for travel

and social interactions.

27



5.1 Data

I obtained the daily U.S. county-level data on Covid-19 cases from the New York Times

database. State-level data on daily testing are from the Covid Tracking Project, and these

are obtained from the website tracktherecovery.org. The New York Times database records

cumulative cases from the first reported coronavirus case in Washington State on Jan. 21,

2020, until the end of the study on Sep. 07, 2020. The data are collected from state and local

governments and health departments. The cases include both those confirmed by laboratory

RNA tests and probable ones based on clinical, epidemiologic, or serological testing, which

mitigates the severe lack of RNA testing, especially at early stages. In Figure 8, the log cases

for all counties over our sample period are presented. We can see that the number of cases

started growing rapidly from mid-March for most counties, although some only started to

record cases in May or June 2020. We can also observe large heterogeneity in the pattern of

case development across counties during this period.

The Covid Tracking Project compiles testing data from each state for the period from

Jan. 21, 2020, to Sep. 07, 2020, including both positive and negative results. The log total

test data is shown in Figure 9. The number of tests began to take off around the beginning

of March, and its growth across counties seems to be much more homogeneous, signaling

concerted policy timings.

The mobility data we use is the Dallas Fed Mobility and Engagement Index (MEI).

MEI data are calculated from SafeGraph data on the spatial behaviors of mobile devices,

measuring at the county level information such as the fraction of devices leaving home per

day, the fraction of devices away from home for 3-6 hours or longer than 6 hours, the fraction

of devices traveling far or near from home, and the average daytime hours spent at home

and away from home. These data are combined using principal component analysis to create

the final indicator, MEI. This is seen as a measurement of mobility as well as engagement

in economic activities. The available data range from Jan. 3 to Aug. 29, 2020. We present

the time series of MEI for each county in Figure 10. We can observe that the mobility level

decreased sharply from mid-March and only slowly recovered to its normal level around June

2020. This trend is shared uniformly by many counties, with varying degrees of magnitude

in the drop in mobility.

The daily county-level weather data is constructed using the Global Historical Clima-

tology Network Daily (GHCN-Daily) dataset. The data for the U.S. comes from the U.S.

National Climate Data Center and include multiple measurements of weather features each
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day from over 15,000 weather stations located in the U.S. I constructed the weather vari-

ables for each county in a similar way as Wilson (2020). First, the contiguous U.S. is divided

into 20-mile by 20-mile grids, and the weather features for each grid are calculated as the

weighted average of readings from the weather stations within 50 miles, where the weights

are the inverses of distances between the centroid of the grid and the weather stations. A

demonstration of this approach is presented in Figure 5 and Figure 6. Note that not every

station has data for each feature every day, so the daily data for these grids are taken as

averages of available measurements on that day. Then the weather features for the counties

are calculated as the averages of information from the grids within each county. The daily

weather variables I collect span the period from Jan. 01 to Aug. 31, 2020, including mea-

surements of precipitation, snowfall, and daily average temperature. The county-level time

series for each weather variable is shown in Figures 12, 13, and 14.

Figure 5
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Figure 6

Data on the NPIs are from the Keystone Coronavirus City and County Non-Pharmaceutical

Intervention Rollout Date Dataset. The data are hand-collected from government health

websites and local news reports, and therefore, they are constrained in terms of the size and

time period they cover. The dataset records 618 county-level NPIs and 53 state-level NPIs,

with the starting dates of NPIs ranging from Mar. 08 to Jun. 08, 2020, and the ending

dates ranging from Mar. 14 to Jun. 27, 2020. Although the number of localities this dataset

covers is small, it is said to cover all U.S. states and counties with at least 100 confirmed

cases as of April 06, 2020. The NPIs are grouped into 11 categories: closing of public venues,

gatherings of size 0-10, 11-25, 26-100, 101-500, lockdown, non-essential service closure, re-

ligious gatherings banned, school closure, shelter-in-place, and social distancing. Figure 11

presents the occurrence of various NPIs for each county during the sample period. Each plot

30



represents an NPI, and the rows are counties and columns are dates. Each row is colored red

for the period when the NPI is active. We can observe from the plot that various NPIs were

introduced around mid-March. There are noticeable variations in the adoption time across

different counties for stricter NPIs, including shelter-in-place orders, non-essential services

closure, and banning gatherings of size 11 to 25. For other NPIs like school closures and

banning gatherings of size 101 to 500, the action times were much more uniform and in effect

for a longer period.

For the control variables, I collect the following, similar to suggestions in previous litera-

ture. To begin with, I have data on the average number of residents per day for each county

in September 2020 as an indicator of the health capacity of the county, from the Federal

Centers for Medicare & Medicaid Services. It can be seen from Figure 15 that this variable

follows a skewed distribution, with most counties having a similar number of residents and

some counties having much more. To evaluate the heterogeneous effects for counties with

different demographic characteristics, I also collect county-level data from the U.S. Depart-

ment of Agriculture Economic Research Service on the percentage of the adult population

with an education level of at most high school/at least a bachelor’s degree during 2014-2018,

the population level as of 2019, net domestic and international migration rates from 2018 to

2019, the percentage of all people and of people aged 0-17 in poverty in 2018, the median

household income in 2018, and the unemployment rate in 2019. Detailed graphs on these

demographic characteristics can be seen in Figure 15. In addition, due to the large overlap

area of our NPIs, as can be seen from Figure 11, there are high covariance between the NPI

policy variables. In order to avoid the multicollinearity problem and improve interpretation,

we use principal componnet analysis to extract the first 4 principal component from our 11

NPI variables. These explain over 80% of all the variations in our NPI data. We present

in Figure 16 the loadings of each NPI variable on the principal components. It’s clear that

the first component measures the global effect of all NPIs (with the opposite sign). The

second component loads mainly on lockdown and banning gathering of size 11 to 25 (with

the correct sign). The third component represents (with the opposite sign) the banning of

gatherings of size 101 to 500. Lastly, the fourth component represents mainly the banning

of gatherings of size 26 to 100 (with a positive sign).

5.2 Model

The first stage is to study the relationship between NPIs and mobility. I first aggregate the

daily data into a weekly panel dataset for both the first and second stage models because the
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Covid-19 data suffers from lagged reporting and occasional corrections, which usually occur

within the next few days. These corrections often happen within a week, so the weekly data

may be more reliable than daily data.

mit = β1git + β2git−1 + wT
itβ3 + PCT

itθ + αi + αt + εit, (61)

where mit is the MEI index, wit is the vector of weather variables (precipitation, snowfall,

and average temperature), and xit is the testing growth. PCit represents the principal

components of the NPIs adopted. αi and αt control for county and time fixed effects that

may affect both mobility and the explanatory variables, such as county-specific demographic

characteristics or national-level policy guidance. This is important, as there tend to be

national trends in weather variables, and the time fixed effects can capture this.

The second stage of the model estimates the weekly dynamic panel data model:

git = α1git−1 + α2git−2 + ϕ1mit−1 + ϕ2mit−2 + wT
it−1δ1 + wT

it−2δ2 + τxit + αi + αt + εit, (62)

where git is the weekly growth rate of new cases, mit is the weekly averaged mobility mea-

surement, wit is the vector of weekly-averaged weather variables, and xit is the testing growth

this period. Two-period lags of mobility and weather are included because they affect dis-

ease transmission and the probability of infection. The average period from infection to

confirmed cases is usually two weeks, but many individuals show symptoms and get tested

more quickly. Mobility is assumed to be predetermined but may not be strictly exogenous,

as people’s willingness to go out might be influenced by current and previous case growth.

Weather variables are taken as exogenous, as in previous literature. Testing growth is in-

cluded as it affects how many infected cases are recorded, and this variable is considered

exogenous after controlling for county-level fixed effects, which capture differences in health

capacity.

County and time fixed effects are added to the model to account for unobserved fixed

characteristics, as well as county- or time-specific measurement errors, which are a significant

issue due to the current poor quality of data. To estimate the model using the Sparse

Group Lasso approach, I first demean the variables across counties to remove the time-

constant effects, then set up the sure and unsure moment conditions depending on the type

of variables, and estimate the model using the sparse group lasso approach proposed in

Section 3.

To get standard errors on our estimated coefficients, we apply bootstrapping on the
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counties. As discussed in Kapetanios (2008), when there is temporal dependence in the data,

bootstrapping with iid cross-sectional data gives a more accurate distribution approximation,

compared with temporal bootstrapping. This is because the former keeps the time-series

structure intact. We follow this suggestion and bootstrap samples across counties. However,

counties within the same state may still exhibit weak dependence. Therefore, we sample on

the state level to keep the correlation structure inside states intact. To make the resampled

data comparable with the original data in terms of the state-county structure, we only

resample states within the cluster of states with the same number of counties. This is the

idea proposed in Sherman and Cessie (1997). For each estimate, we resampled 1000 times.

We use the mean estimate as our final estimate and the standard deviation of the estimate

as our estimated standard error.

5.3 Results and implications

First-stage results For the estimation of the first-stage model, 10 regressions are esti-

mated, including the baseline model and the results for 9 subsamples. These results are

reported in Tables 4, 3, and 2, and all the regressions are estimated using panel data models

with county fixed effects (after we first demean across counties to eliminate the time fixed

effects). We used Driscoll-Kraay HC3 clustered standard errors Hoechle (2007) to account

for the cross-sectional dependence of counties and temporal dependence within each county.

In the baseline model, both current and lagged case growth, as well as test growth, have a

significant negative effect on mobility. This is intuitive as people voluntarily reduce mobility

to avoid getting infected. Higher temperature encourages mobility, while higher precipitation

discourages it. In terms of the NPIs, the average effect of all NPI measures is negative and

strongly significant. Strict measures like lockdowns and banning gatherings of size 11 to 25

have a significant negative effect on mobility, but the magnitude is only one-third of the

average effect. This is perhaps because when these strict measures are taken, the Covid

situation is already severe, and voluntary decreases in mobility dominate, resulting in a

smaller additional effect of the NPIs. Notice that PC3, which represents banning gatherings

of size 101 to 500, has a significant and large negative effect. This could be due to the

fact that this relatively mild NPI started early in the pandemic. This range of group size

corresponds to large gatherings like concerts or conferences, both of which involve a lot of

long-distance travel. This policy tool is then very effective in reducing mobility. Somewhat

surprising is the effect of PC4, which represents the banning of gatherings of size 26 to 100.

This effect is significant but positive. This shows there may be some substitutions from
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gatherings of this size to smaller gatherings, which ultimately increase mobility.

The results from different subgroups are mostly consistent with the above observations

despite a few exceptions. Interestingly, banning large group gatherings of size 101 to 500

has no effect in poorer areas (seen from Table 2) as it’s less likely to host large events.

They also respond to PC4 with a larger positive effect, which could point to a lack of

regulation in these areas and large substitution effects of the NPI. Strict measures like

lockdowns are more effective for counties with more domestic migration (seen from Table 3),

as domestic migrants tend to be more mobile and need more travel to maintain social ties.

Strict measures greatly reduce the possibilities. From Table 4, we also notice that lockdowns

are more effective in reducing mobility for less-educated areas than for more-educated areas,

possibly due to a higher proportion of people engaging in manual or service-related work.

Banning gatherings of size 26 to 100 is again positive and significant for less-educated areas,

signaling a substitution effect similar to what was observed in poorer areas.

From these results, we learn that most NPIs are effective in reducing mobility, but the

right NPI choice for each area needs to take into account local demographics. What works

for one location may not be effective in another and may even have unintended policy effects

as we discussed above.

Second-stage results The second-stage results are reported in Table 5. We formed our

standard error using bootstrapped samples, and the test statistics are calculated as the ratio

between the mean estimates and the standard deviation of the bootstrapped estimates. We

can see that the Covid case growth rate is significantly affected by the previous two lags.

Among the rest of the insignificant variables, temperature and mobility from two periods

ago have the largest test statistics. This supports our belief that it takes around two weeks

for the effect of infections to show up as new cases. Mobility has a positive effect on cases,

whereas higher temperature reduces cases. The results are more interesting when we look

at different subsamples in our dataset (see the results in Table 6). Past case growth shows

a consistently significant effect on current case growth across most groups, particularly in

areas of large population. In terms of mobility, only mobility from two periods ago has

significantly positive effects on case growth for some subsamples. The effect is particularly

noticeable for less-educated areas, areas with a high proportion of international migration,

and highly populated areas. We also see some evidence of precipitation increasing the case

growth rate (also with two-period lags), supporting the argument that humidity makes the

Covid virus last longer. Temperature has a large negative and significant effect on case
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growth, which is consistent with common beliefs from medical research. These results show

that controlling mobility is effective (at least in some demographics) for controlling Covid

case growth, even after controlling for important influencing factors like temperature and

precipitation.

6 Conclusion

In this paper, I focus on estimating dynamic panel models using the GMM method. I begin

by discussing the available moment conditions under various combinations of assumptions

about the variables and error structures. The specific grouping structure of these moment

conditions motivates the use of the Sparse Group Lasso approach. A simulation study was

conducted to compare the performance of this method against benchmark methods. AL

methods generally perform the best under the simulation settings. Sparse Group Lasso

yields results that are close to the AL methods in most cases, except in high-dimensional

settings where shrinkage bias worsens its performance. Despite the superior performance of

AL methods, they are computationally expensive as the number of candidate models and

moment conditions increases. Compared with the adaptive elastic net method from Caner

et al. (2018), I find that the Sparse Group Lasso approach exhibits better properties in terms

of bias, standard errors, and RMSE of the estimators.

In the empirical section, we estimate the effects of different NPIs on reducing mobility,

demonstrating that this effect varies depending on local demographics. Mobility is also

shown to affect Covid case growth in certain subsamples. Areas with these features should

be cautious in regulating mobility, as the persistence in Covid case growth implies that once

there is a surge, it may continue for multiple periods. The results of the empirical analysis

can help inform better policymaking to contain the Covid pandemic.
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Table 5: Second stage results (Full sample)

Variable param mean param sd param tstat

lag(casegrowth) 0.258 76 0.088 09 2.9374 ∗∗∗

lag(casegrowth,2) 0.146 37 0.061 09 2.3962 ∗∗

lag(mobility) 0.010 33 0.031 98 0.322 89
lag(mobility,2) 0.070 78 0.067 34 1.051
lag(precipitation) 0.013 90 0.050 73 0.274 09
lag(precipitation,2) 0.002 58 0.003 56 0.726 77
lag(snow) 0.000 44 0.001 96 0.226 89
lag(snow,2) 0.159 09 0.361 51 0.440 07
lag(temperature) −0.128 75 0.296 91 −0.433 64
lag(temperature,2) −0.013 45 0.008 33 −1.6147
testing −0.004 13 0.007 75 −0.533 08

Note: ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.

7 Appendix

Figure 7: R0
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Figure 8: Log(cases+1) over time and across counties

Figure 9: Log(total tests+1) over time and across counties
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Figure 10: Time series of mobility index MEI across counties
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Figure 11: Occurrence of various NPIs across counties (rows) and over time (columns)
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Figure 12: Time series of precipitation for all sample counties (tenths of a millimeter)

Figure 13: Time series of snowfall for all sample counties (millimeters of snow depth)
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Figure 14: Time series of temperature for all sample counties (tenths of degrees Celsius)
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Figure 15: Histogram of control variables across sample counties
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Figure 16: Loadings of various NPIs on the principal components
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